
Enterprise . Cost . Management . Planning

Alan Mackenzie - alan.mackenzie@ecmp.co.uk
Adam Baldwin - adam.baldwin@ecmp.co.uk

ECMP work as an extension of our customer’s organisation, working closely
with the customer technicians. We provide services and solutions to bring
together the key components covering Cost Management and Optimisation of
an IT Estate.

Introduction – Who we are

We do this by bringing in
experienced optimisation experts
who focus on different components
of the environment as needed. In
addition, we have partner
companies we call on for specific
skills and SW needs.

• Performance Management
• Runtime environments
• System settings
• Application optimisation

• Transparency
• Commercial Management

2EPS PresentationAugust 2025

As you’d expect, EPS is one of these partners with their Pivotor solution. We’ve run a
number of joint engagements to save consumption and improve overall performance for
our customers.

Introduction – Partnering

The joint engagements with EPS have helped our customers in the US and Europe.
These have ranged from optimisation engagements aimed at reducing peak / total
consumption, through to focusing primarily on WLM.

When customers move to a TFP agreement we believe the offloading of their SMF
post-processing provides multiple benefits. Firstly it provides space for growth on their
yearly MSU consumption, an immediate cost avoidance, and secondly it allows the
technical experts top focus more on performance analysis rather than producing SMF
reporting.

Other partner companies focus more on the commercial side of engagements, assisting
customers reduce / improve their agreements with their HW and SW vendors. This has
ranged from assisting companies negotiate a move to TFP through to providing
benchmarks when customers are negotiating with SPs.

3EPS PresentationAugust 2025

Some key areas to cover off today:
• Transparency – ensure knowledge is available and shared – What are

your important top consumers and how are they trending
• Tools – SW toolsets are very important to gain a strong look at what

an address space is doing. We’ll cover off some of these with some
examples

• Focus Areas – Application optimisation can be a whole raft of
improvements. We’re going to look at some of the more common
ones we come across

• Inefficient code and SQL statements
• Poor design
• Run-Time overheads

What we’re covering

4August 2025 EPS Presentation

There are three fundamental tool-sets that need to be in place.
• Transparency

• SMF post-processing. Pivotor from EPS of course, and there’s others out there.
• Too often it’s not used by Application Teams, skillsets and SMF knowledge is often

lacking. This adds extra pressure on the zOS teams.

• Sampling Tools – Since Strobe came about many years ago,
sampling tools have been a bedrock of tuning applications and run-
time environments. We’ve used a number over the years – IBM’s APA
and Compuware’s Strobe products are the market leaders.

• Monitors – there are a raft of different monitors out there. Used
correctly, the DB2 tools such as CQM, Detector and Apptune are very
powerful tools. We’ll touch more on this in a later slide

Toolsets

5August 2025 EPS Presentation

Some core areas that we often come across

• Poor Code
• Incorrectly defined variables resulting in a lot

of conversion work to be done by the
application program (under the covers from
what the coder sees generally)

• CVB, CVD etc.

• Repetitive moving of large data

• Design issues – We recently helped a site
that had huge amounts of very optimized
DB2 accesses, but the design meant a lot of
these were repetitive that could be avoided
by different methods.

• Run-Time – Poor compile versions / options,
Language Environment, overheads from
external sources.

Application Optimization – Core Areas

6August 2025 EPS Presentation

System and Infrastructure
• System STCs

• HSM
• JES
• Monitors
• XCFAS
• Others

• Bufferpools / Storage
• WLM / Service Classes
• Schedules
• USS

Application Components
• Architecture and Design
• Code

• Cobol
• Java
• Etc.

• Data Access Routines
• DB2
• IMS
• VSAM, QSAM, HFS etc.

JCL
LE

Middleware
(MQ Series,
WebSphere

etc.)
Run-Time
Standards

zParms
Indexing

DDF

It’s difficult to think of all areas where coders can cause poor performance. It’s almost too
easy for them. Some more common mistakes we see are listed below:

• Poor declares of data items. For example, declaring a Numeric field as a Display
Decimal. This will functionally work, but under the covers the compiler provides a host of
instructions to allow it to.

• Unneeded moving and initialisation of data. You probably won’t spot these unless it’s a
well used MVCL statement. Example – customer initialised a large IO-AREA before
calling a subroutine that did the exact same initialisation. Removing the first one removed
the overhead. Simple change but in this case, very effective.

• Invalidating Cache instructions. More likely to be in old code / compiles. Not that frequent
these days, but we did come across a decent sized issue in the past year or so in a
frequently used assembler program. Modifying data held in an instruction cache causes
significant processor overhead. Keeping data and instructions separate avoids this
overhead.

The days of experienced coders who understand the underlying fundamentals is
disappearing. Those that are around still are getting more and more stretched and their
beards are getting greyer.

Code issues

7August 2025 EPS Presentation

Understand your key Applications. Design flaws come to light when you can really
understand what the program function should be, and how they have implemented it. It’s all
very well and fun to correct inefficient code usage, but generally more substantial
improvements come from understanding the code in more detail.

One area we saw very high problems with at a large customer was continued retrieval of the
same data from DB2. This was resolved multiple ways depending on the SQL in question.

• A caching solution. Fairly typical fix knowing that most the data will be reviewed multiple
times. We created a look up cache in the program memory which provided huge savings
on SQL counts, and of course the resultant saves in CPU consumption. One program we
corrected resulted in a 30% reduction in ALL SQL executions on the production systems.

• The second solution was moving filtering from the application to the SQL predicates. This
was a simpler change and still returned substantial saves.

Design issues

8August 2025 EPS Presentation

• Another case we found was spikey CPU consumption each hour. Reviewing the
application showed errored transactions being re-fed into a long running batch job each
hour to see if they could be processed (these were trade settlements). When trade
errored, it caused the application to abend – the application had been ported from an ICL
previously – and then the batch job auto-restarted and bypassed the errored trade once
more. This was corrected by looking closely at the restart architecture, and implementing
a ‘semi-restart’. In simple terms, we prevented the ‘abend’, wrote the trade identifier to a
single line bypass file, issued a rollback to DB2 / MQ, and when the trade was reread in
we automatically put it to the error queue and bypassed it.

The key point here is that design flaws are often inherent in old code, and most sites do not
want a huge rewrite. Whilst a couple of these examples were complex and needed a lot of
testing and analysis, we did that knowing the rewards were very high.

Design issues

9August 2025 EPS Presentation

We tend to define run-time as anything that is influencing the application address space.
This can include a raft of things such a Language Environment, Traces, Monitors / Data
gatherers etc.

Again, the use of a Sampling tool is the simplest way to determine what you’re looking at.
Here’s an example from a batch job at a customer. The APA Report here is a PDF file so I’ve
extracted some key report entries that you should look for.

This first extract is from the C01 report, drilling in the System section. For this example we
see 1.68% CPU due to extending the stack size. At this particular customer we did see a
LOT of stack overheads.

Application Optimization – Run-time

10August 2025 EPS Presentation

We ran some LE reports in the development environment for the same batch jobs.
Fortunately they ran some large regression tests which allowed us to measure the overhead
as well as the improvement from our changes.

The report below is from a RPTSTG/RPTOPT LE report we added in to the JCL via the
CEEOPTS DD statement. Here we see that there were 4 segments allocated. Of course we
want these to be as minimal as possible.

We’re not gong through all the analysis here, but the solution was put forward a change to
the allocations in the CEEPRMxx member to increase the initial allocation and remove this
overhead in the majority of jobs. Whilst not huge in the overall consumption of some jobs,
overall the saving was significant - a lot of small bits combined equals a decent saving.

Application Optimization – Run-time

11August 2025 EPS Presentation

Compiler versions and options are always interesting. The below assumes your compiler is
up to date or close to, and running 6.* versions and above.

One of the key issues we continually come across is a lack of understanding or use of the
ARCH option. ARCH specifies the lowest level of HW for an application to run on. By Default
ARCH(8) is specified, which refers to the lowest HW being a z10. The following setting
comparisons are taken from IBM’s blurb, but take these numbers with a grain of salt, even
IBM’s numbers conflict across different articles.

Application Optimization – Run-time

12August 2025 EPS Presentation

Assuming you get within the ballpark of
the improvements listed, it is a
worthwhile setting to get right in your
applications.

We’ve also seen great results in
ensuring that when doing this you also
move to OPT(2) where possible. This is
not my area of speciality, but the impact
of the Vector versions of old instructions
seems to have provided quite the gain in
some programs.

Sampling tools are a great. The best
tool for application tuning.

By default we’d recommend a sample
rate of about 1,000 per minute, and
avoid the + collectors. For DB2, just the
plain DB2 collector should be used,
unless you have specific need for the
extended information.

The only thing to be careful of is
running it with the wrong collectors.
Some of the Plus Collectors under APA
will add a lot of overhead to the job.
APA is kind enough to let us see it too
in the reports. The second screen print
is ideal.

Sampling Tools

13August 2025 EPS Presentation

As mentioned earlier, Sampling tools
are unable to find an entry point for
CSA driven consumption. Here’s a tip
that we use to identify the driver(s). This
works for both Strobe and APA. We’ll
use APA as our Sampling tool and track
through the steps.

NOSYMB in this sample is showing as
9.99% of the CPU consumption within
the C01 report. We can drill down
further and note the majority of the
consumption is address 2900Cxxx.
Interestingly there is more overhead in
a similar location which will likely come
from the same driver.

CSA driven consumption

14August 2025 EPS Presentation

The C09 report allows us to drill into the
instructions at this location. Here we
see a MVCL at 2900CD9C.

We now jump to a lovely little free tool
from IBM – TASID. This allows us to
view storage easily in real time.
Remember, if you’re looking at an older
Sample report and there’s been an IPL,
the offsets will have changed.

In this case, we know we had no IPL
and the report had just been taken. The
module loaded at that address is from
SYSVIEW – so there’s a nice pointer as
to what is driving 10% of your
consumption of that address space 

CSA driven consumption cont.

15August 2025 EPS Presentation

Any questions? If we don’t have the answer we will find it and send on to anyone
interested

Questions

16August 2025 EPS Presentation

TASID is available as a free download from IBM on an “AS IS” basis. Instructions and
download package can be found at:

https://www.ibm.com/support/pages/tasid-v521-tool

https://www.ibm.com/support/pages/tasid-v521-tool
https://www.ibm.com/support/pages/tasid-v521-tool
https://www.ibm.com/support/pages/tasid-v521-tool
https://www.ibm.com/support/pages/tasid-v521-tool
https://www.ibm.com/support/pages/tasid-v521-tool

	Slide Number 1
	Introduction – Who we are
	Introduction – Partnering
	What we’re covering
	Toolsets
	Application Optimization – Core Areas
	Code issues
	Design issues
	Design issues
	Application Optimization – Run-time
	Application Optimization – Run-time
	Application Optimization – Run-time
	Sampling Tools
	CSA driven consumption
	CSA driven consumption cont.
	Questions
	Slide Number 17

